Solvability of the Generalized Possio Equation in 2D Subsonic Aeroelasticity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvability of the Generalized Possio Equation in 2d Subsonic Aeroelasticity

We study solvability of the generalized Possio integral equation a tool in analysis of a boundary value problem in 2D subsonic aeroelasticity with the Kutta-Joukowski condition ”zero pressure discontinuity” ψ(x, 0, t) = 0 on the complement of a finite interval in the whole real line R. The corresponding problem with boundary condition on finite intervals adjacent to the ”chord” was considered i...

متن کامل

Reduction of Boundary Value Problem to Possio Integral Equation in Theoretical Aeroelasticity

The present paper is the first in a series of works devoted to the solvability of the Possio singular integral equation. This equation relates the pressure distribution over a typical section of a slender wing in subsonic compressible air flow to the normal velocity of the points of a wing downwash . In spite of the importance of the Possio equation, the question of the existence of its solutio...

متن کامل

A note on unique solvability of the absolute value equation

It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...

متن کامل

On a Boundary Value Problem in Subsonic Aeroelasticity and the Cofinite Hilbert Transform

We study a boundary value problem in subsonic aeroelasticity and introduce the cofinite Hilbert transform as a tool in solving an auxiliary linear integral equation on the complement of a finite interval on the real line R.

متن کامل

Solvability of Laplace’s Equation

We’ve shown that if a solution exists, it’s unique (though only up to an additive constant for the Neumann boundary condition; in this case there’s also a requirement on g). We’ve also shown other interesting properties possessed by any solution, e.g., the maximum principle and the mean value property. Existence is actually the toughest issue. On certain special domains like rectangles and circ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Methods and Function Theory

سال: 2006

ISSN: 1617-9447,2195-3724

DOI: 10.1007/bf03321631